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Diagonal Scalings of the Laplacian as Preconditioners for Other

Elliptic Differential Operators
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ABSTRACT

We consider the use of diagonal scalings of the Laplacian matrix as precondition-

ers for matrices arising from other second order self-adjoint elliptic differential operators.

It is proved that if a diffusion operator with a piecewise constant but discontinuous diffu-

sion coefficient is preconditioned by a diagonal scaling of the Laplacian, then, in the limit

as the mesh size goes to zero, the optimal diagonal scaling is just the identity. This is in

contrast to the case in which the diffusion coefficient is smoothly varying, in which case

numerical evidence suggests that the optimal diagonal scaling is approximately equal to

the square root of the diagonal of the matrix.
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Diagonal Scalings of the Laplacian as Preconditioners for Other

Elliptic Differential Operators

A. Greenbaum f

Courant Institute of Mathematical Sciences

251 Mercer St.

New York, NY 10012

1. Introduction.

In [2] experiments were reported using a numerical optimization code to determine the precondi-

tioner of a specified form which, for a given coefficient matrix, minimized the condition number of the

preconditioned system. One of the more interesting experiments involved finding the optimal diagonal

scaling of the Laplacian to use as a prcconditioner for other second order self-adjoint elliptic differential

operators. Similar experiments had previously been carried out in [1], and the use of preconditioners of

this form has also been discussed in [6].

Let A;, be the matrix arising from a finite element or finite difference approximation for the problem

-VaVu=f inQ (1.1)

u=0 ondn,

where the positive coefficient a varies throughout the domain Q and is bounded away from zero. Let A^, be

the Laplacian matrix arising from the same finite element or finite difference approximation for the prob-

lem

-Au=f inQ
'

(1.2)

u=0 onm.

LetD be any positive definite diagonal matrix. One might consider using the matrix

M=DA^D (1.3)

as a prcconditioner for the matrix Af, in an iterative algorithm such as the Chebyshev or conjugate gradient

method to solve problem (1.1). At each iteration it is then necessary to solve a linear system with

coefficient matrix M, but such linear systems are generally much easier to solve than the original problem

with matrix A^,. It is trivial to invert the diagonal maaix D, and, on a uniform rectangular grid, A;, can be

solved with a fast Poisson solver. On an irregular region A;, can be solved by embedding the region in a

rectangle and using an integral equation formulation of the problem [4]. The number of iterations required

by the Chebyshev or conjugate gradient algorithms can be bounded in terms of the condition number of the

preconditioned system, and so one might then ask what is the best diagonal mau-ix D to use in (1 .3) in order

to minimize this condition number. That is, find a positive definite diagonal mau-ix Df, such that

t This work was supported by the Applied Malhematical Sciences Program of ihe US Department of Energy under con-

tract DE-AC02-76ER03077 and by the Advanced Research Projects Agency of the Dept. of Defense under contract

F49620-87-C-0065.



min K((DA,D)-M,) = k((D,A,D,)-M,) , (1.4)
D e {positive definite diagonat matrices}

where K(Af "' A/,) is the ratio of the largest to smallest eigenvalue of M~^A^, or, the condition number of the

symmetrically preconditioned matrix, A/~"^/l;,Af~"^. This is equivalent to finding a matrix D^ which

minimizes

over all positive definite diagonal matrices D, since the eigenvalues of A^'(D~'>\>,D~') are the same as

those of (DAf,Dy^Af,. The problem was stated in this second form in [1].

In this paper we prove a somewhat counter-intuitive result about the optimal diagonal scaling D^,

when the diffusion coefficient a is piecewise constant but discontinuous. Both the result and the method of

proof became apparent from studying numerical results of the optimization code, thus indicating the useful-

ness of such a code as a tool in the study of preconditioners. The result is that in the limit as the mesh size

h goes to zero the optimal diagonal scaling Df, approaches the identity (or a scalar multiple of the identity,

since scalar factors do not affect the condition number). This is in contrast to the case of a smoothly vary-

ing diffusion coefficient a, in which case numerical evidence suggests that the optimal diagonal scaling D),

is approximately equal to the square root of the diagonal of the matrix Af,.

2. A Piecewise Constant Diffusion Coefficient: Theoretical Results.

The first theorem that we prove is very general in nature, applying to arbitrary matrices and precon-

ditioners with a certain algebraic properly. It characterizes a space in which the extreme values of the Ray-

leigh quotient must be attained. The next two theorems use this result and apply to matrices arising from

specific forms of equation (1.1), with preconditioners of the form (1.3).

Theorem 1. Let A and C be two n by n symmetric positive definite (SPD) matrices and assume that certain

rows of C are just scalar multiples of the corresponding rows of A; that is, there is a nonempty set S such

that for each ;' e S there is a scalar c, such that

C., = c,A.j, Vj = \,---,n. (2.1)

Then the extreme values of the Raylcigh quotient —=— are obtained for vectors v satisfying either
V Cv

(Av), =0 Vi£S (2.2)

or

v,=0 VjtS. (2.3)

Proof. Let w be an arbitrary vector and let v be a vector which satisfies (2.2) and which matches w in all

components outside of S. Such a vector exists since A is SPD and hence ever)' principal submatrix is non-

singular. The vector w can be written in the form

W = V + V,

T ~ ~r
where v satisfies (2.3). Hence v Av = v Av = and we have



w Aw = V Av + V Av.

Since (Cv), is also zero for all i £ S, il also follows thai

w^Cw = v^Cv + V Cv.

Thus the Raylcigh quotienl is given by

'Aw vMv + V Av

w^Cw v^Cv + v Cv

and since each term in the numerator and denominator is nonncgative, it satisfies

v^Av V Av w^Aw ^ v^Av v Av
< max

V Cv V Cv \
w'Cw [ v'Cv V Cv

from which the desired result follows

The spaces defined by (2.2) and (2.3) arc both A-orthogonal and C-orthogonal to one another, and together

they span all of/?". The technique of expressing a given vector as a sum of vectors from each space will

be used in the proofs throughout the paper.

Wc first use theorem 1 to prove a result about the one-dimensional problem

—-{a—-)=f. ATE (0,1)
ax ax

w(0) = «(l) = 0,

where the coefficient a (x) has the form

(2.4)

a{x) =
fli. ifA:<.5

a,. ifx>.5 • «i.«2>0. «,^2. (2.5)

Let A^ be the matrix arising from a continuous piecewise linear finite element approximation for this prob-

lem on a uniform grid of size h. Assume that the grid contains a node at the point of discontinuity of a {x).

The matrix A;, is then given by

2a 1 -fli

-fli

-a,

-Ui 2a\ -a
I

-a I a]+a2 -a

2

-a , 2a

n

A,=

-0 2 2a

2

(2.6)
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Let A>, be the one-dimensional Laplacian matrix arising from a continuous piecewise linear finite element

approximation for the problem

uiO) = u{l) = 0,

(2.7)

on the same uniform grid. The matrix A^ is just tridi (-1,2,-1). We prove the following theorem.

Theorem 2. Let A^ and A^ be as defined above and let D^ be a positive definite diagonal matrix which

satisfies (1.4). Then

(1) Df, has the form

d^J,

do J,

where Ji ^, d2,h^ and df, are positive scalars and />, is the identity of order , where h=
2 n + l

(2) In the limit as /!—)0, these scalars approach each other; that is.

lim di t,
= lim ^2 a = lim df, = d.

UD,, is any matrix of the form

d,,h

di J,

(2.8)

and the positive scalars di >,, d2,k, and dt, approach different limits as h-^0 (more generally, if there

exist positive constants e and 5 such that for all h less than 6 either l^,^-^;,l > e or

\d2,h-dh I > e), then

K-((D,A,D,)-'A,)>0(/!-2) as h^Q.

We prove this theorem through a scries of lemmas. For simplicity we drop the subscript h when it is

clear which variables depend on h. The point of discontinuity of a, x=.5, is grid point number —-— , which

we denote by m.
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Lemma 2.1. Let D be any mairix of the form

D =

d.l

where di, di, and d are positive scalars and / is the identity matrix of order m-1. Define M to

matrix DAD, where A is the Laplacian matrix. The vectors v for which the Rayleigh quotient

attains its extreme values satisfy

(Av),=0, j = l, • • • ,w-2, m+2,...,n,

or, equivalently,

n-1-2/

n-\-2j
Vm+1+; =

n-1

7=1, • ,m-2

j = l, ,m-2.

(2.9)

be the

v^Afv

(2.10)

(2.11)

Proof. Result (2.10) follows from theorem 1 since all rows of Af, except rows m-l, m, and w + 1, are just

scalar multiples of the corresponding rows of A and since either of the extreme values, a\ ld\ or 02/^2.

which can be taken on by the Rayleigh quotient for vectors which are zero outside fl,...,w-2,w+2,...,«j

can also be taken on for vectors satisfying (2.10).

By definition of the matrix A, the equations (2.10) are equivalent to

2



Proof: For any vector v satisfying (2.10) and (2.11), we can write

v^Av = v„_i(Av)„_i + v„(Av)„ + v„+,(Av)„+i

= v„_iai(2v„_i -v„_i - v„) + v„((ai+a2)vm-aiv„_i -a2Vm+i) +
n — \

/T 1 -3 ,

Vm+ia2(2v„+i - v„ rv„+i).
/I —

1

After simplification this becomes

2 2
v^Av=ai [(v„-v„_i)^ + -v^_i ]+a2 [(Vm-Vm+i)^ + rVm+1 ]•

/i-l n-\
(2.12)

Similarly, v A/v can be written as

v^A/v = (dv„-diV„.,)^ + r^?^m-i +('^V„-J2V„+l)^+ r£'2Vm+l.
n-1 n-\

(2.13)

Taking v„_, = v„ = v„+i = 1 and dividing (2.13) by (2.12) gives

v^A/v
{d-d,f + -^d] + {d-dj? + -\dl

n-\ n-\

v^Av
--(ai+a2)

n-\

„-l m2x{{d,-dfAd2-df}

2 a 1+02
>0(h-^).

Taking v„_i =— , v„+i = — , v„ = 1, and dividing (2.12) by (2.13) gives
di di

r^ ad{\-dld,f+-^{dld,Y] + a2[{\-dld2f+^{dld2Y]
V Av n-\ n-\

n-\

n-\ max {a^{\ld-\ld^f, a2{\ld'\ld2f}
>0{h-^).

Hence, by definition of k, we have

K(M-M) = vMv
v»o v^A/v

V Av

»o v^Mv

vMv
v*o v^A/v

v^A/v

v»o v'^^Av

n-\

2

max^ai(l/rf-l/<ii)^ 02(1/^-1/^2)^; maxf(rfi-^)^ (^2-^)^^
> ^ ,^-2.

^1+02



Lemma 2.3. (Assertion (1) of ihc theorem.) If D is a matrix of the form (2.9) which satisfies

min k((DAD)-U) = k((DAD)-'A)
D of the form (2.9)

then D also satisfies

min k((DAD)-M) = k((DAD)-M).
Dzipositive definile diagonal matrices}

Moreover, any positive definite diagonal matrix which satisfies this equation is of the form (2.9).

Proof: Let D = diag (5,), j=l, • • • ,n be any positive definite diagonal matrix and let Dbe the matrix of the

form (2.9}^ whose (m-l)", m'*, and {m + \y' diagonal elements are equal to those oi D. Define M =DM>
and M = DAD. Let v be a vector satisfying (2.10). Then v^Mv satisfies

v'''Mv = v'''DD'^MD~^Dv = w'''Mw,

where w=D £>v matches v in components OT-l,m, and w + 1. AsinTheorem 1, then, w can be written in

the form vv = v + v, where v„_i=v„=v„+i=0, and hence v Mv = v^A/v = 0. It follows that

v^Mv = w^Mw = v^A/v + V Mv > v Mv.

Since, by theorem 1 , the largest value of the Raylcigh quotient -^— is obtained for a vector v satisfying
V Av

(2.10), it follows that

v^Mv ^ v^Mv n T/\\max^=— >max—r—

.

(2.14)
v»o V Av ^*o V Av

Now let a vector w be given by

w=D~^Dv,

where v again satisfies (2.10) Then w^Mw is equal to v^A/v, and, since the {m-Vf, m"', and im + \y' ele-

ments of vv match those of v, we can again write w in the form h- = v + v, where v„_]=y„=v„+i=0.

Hence v Av = v^Av = and we have

w^Aw = v^Av + V Av > v^Av.

Since, by theorem 1, the Raylcigh quotient ^r- obtains its largest value for some v satisfying (2.10), it

v^Mv
follows that

max =— > max ^r—

.

(^-i-^)
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From (2.14) and (2.15) and the definition of k, then, the desired result follows:

v^Av
K(Af-'A)<KOW A) =

.0 v^A/v
max4^1 <k(M-'a).

Since the inequalities in (2.14) and (2.15) are strict unless v is zero, i.e., unless D is, itself, of the form

(2.9), the second part of the lemma is also proved.

When the Laplacian A^ is used as a preconditioner for A^,, the condition number of the precondi-

tioned system is bounded, independent of h:

K(A;;Mj<maxf— , —;.
a-, a,

Theorem 2 shows that, for small h, the best diagonal scaling is close to the identity (or a scalar multiple of

the identity) and so this bound cannot be improved much. The wrong diagonal scaling can greatly increase

this condition number. For larger values of h, however, an appropriate diagonal scaling can significantly

reduce the condition number of the preconditioned system, as will be demonstrated in the following sec-

lion.

A similar result holds for the two-dimensional problem

-{-fia^)+-^{a^))=f, {x,y)ziO,\)x{0,l)
ax ax ay ay

M(x,0) = M(x, \)^uiO,y) = u{l,y)^0

(2.16)

where the coefficient a (x,>) has the form

'^'''^^C^,Z>'s' ^••^^>«' '^'^^•
(2.17)

Again let A^ be the matrix arising from a continuous piecewise linear finite element approximation for this

problem on a uniform triangular grid of size h, having a mesh line at the discontinuity, >=.5. If the natural

ordering of nodes is used then A,, has the form

Ah =

aj
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where T=tridii-\A-l) and / is the identity of order n for a grid of n by n interior nodes. Let A>, be the

two-dimensional Laplacian matrix arising from a continuous piecewise linear finite element approximation

for the problem

-(|-y + TT)=/' (^.>)e(0,1)a:(0,1)
ax ay

u{x,0) = u{x,l) = u{0,y) = u{\,y) =

(2.19)

on the same uniform grid. The matrix A^ is block tridi{-IJ,-I). The following theorem is proved very

similarly to the 1-D case.

Theorem 3. Let A^, and A,, be as defined above and let D>, be a positive definite diagonal matrix which

satisfies (1.4). Then

(1) Dy, has the form

di.kh

dj.

dfhh

where di,(,, ^2,*, and d/, are positive scalars, />, is the identity of order ——— , and / 5 >, is the iden-

tity of order n, where h=
n+\

(2) In the limit as /i^O, these scalars approach each other; that is.

lim d
1 ;,

= lim ^2 A = ^"^ ^/i - d.
A-»o A-»0 ' *-»o

If Dl is any matrix of the form

D.=

d,,h

dJ

diJ)

(2.20)

and the positive scalars d^,,, 1^2./,, and df, approach different limits as /i—>0 (more generally, if there

exist positive constants e and 8 such that for all h less than 8 either \di_),-dh^ > e or

^di.h-dh I > e), then

K{{D,A,D,r'A,)>0{h-^) as h^.
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As in the 1-D case, we prove this theorem through a series of lemmas, dropping the subscript when it

is clear which variables depend on h. The matrices considered in the 2-D case can be thought of as block
« 4-1

mauices, with n blocks, each of order n. The subscript m= will denote the middle block, correspond-

ing to the Hnc of discontinuity in a. For any n^ -vector v, v^ will denote the k"' block of v.

Lemma 3.1. Let D be any matrix of the form

D =

dj

dl

d-,1

(2.21)

where d^, di, and d are positive scalars, / is the identity matrix of order —-— , and / 5 is the identity

matrix of order n. Define A/ to be ihc matrix DAD, where A is the Laplacian matrix. The vectors v for

which the Rayleigh quotient -^— attains its extreme values satisfy

V Mv

(Av),=0, 1 = 1,
••• ,m-2, OT+2,...,n, (2.22)

Proof: As in the 1 -D case, the result is an immediate consequence of theorem 1

.

Lemma 3.2. Let v be a vector satisfying (2.22) and let v„_i and v„+i be eigenvectors of

T = rrj'ii/ (-1,4,-1). Then each block v, can be written in the form

v,=Y,v„_i, i = \,...,m-2

v,=Y,v„+i, i=m+2,...,n

(2.23)

for some scalars 7,. If v„±, is the eigenvector associated with the smallest eigenvalue of T, then

Y.±2=l-0(/i).

Proof: Equations (2.22) are equivalent to

T -I

-I

-I 7

"1
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This has a unique solution for Yi Ym-2 if M^2, and since all eigenvalues of T arc greater than 2 this

condition holds and the solution of (2.24) is, indeed, of the form (2.23).

Let Tt denote the tridiagonal matrix tridi{-\,\X,-\) of order k and let dcl{'I\) denote its determinant.

Solving (2.25) using Cramer's rule gives

_ detiT„_^)
'^"'"^~

dei{T„_2)'

where det (7*) satisfies

det{To)=\, der(r,) = n,

det{T,) = ^detiT,.,)-dei{'I\_2\

det a\)
and Ti = -r—z^—r satisfies

det{Tt.i)

n =M.

ri = u. , k=2,...,m-2.
rk-i

If carried out indefinitely, this recurrence converges to a solution of the equation

1

namely,

2

and it is easy to check that after w -2 = (9 (/i ') steps, the ratio r„_2 is greater than this limit by 0(h). If |i

is the smallest eigenvalue of T, then |i = 2+0 (/i^), and so r„_2 = 1+0 (h) and y„_2 = 1 /r„_2 is 1-0 (/:).

Lemma 3.3. (Assertion (2) of the theorem). Let D be any positive definite matrix of the form (2.21). If

di,d2, and d approach different limits as /i—>0, then

K{M'^A)>0(.h-^) as h^O,

where M=DAD.

Proof: Let V be a vector satisfying (2.22), with v„_i = v„ = v„+i being the eigenvector of I, of unit norm,

corresponding to the smallest eigenvalue, |i = 2+0 (h^). Then v^Av is given by

a 1+6(2

v^Av = a,(|i-I-Y„-2) + —z— ^-ai-a2 + «2(^-l-Ym+2) = 0(/i)

while v^Mv satisfies



-12-

v^A/v = dl(ii-y„.2}-2did + 5V + dl{[i-y„^2y2dd2 > {d,-df + (d-d^f

Hence the ratio satisfies

^>0(/z-').
V Av

If, instead of having unit length, the blocks v„_i and v„+i are taken to have lengths —— and —— , respec-

lively, then we find

"1 d-i

v^A/v = d'[0i-Y^-2-l) + (M-2) + (M-Y».+2-l)] = {h).

In this case, then, we have

4^>0(r>).

and so the condition number satisfies

K{M-^A)
vMv

v»o v'Mv

v'^Mv

v»0 vMv
>0(/j-^).

Lemma 3.4. Let D be any positive definite diagonal matrix whose (m-lY', m'^, and (m + \y' diagonal

blocks are just scalar multiples of the identity. Let D be the matrix of the form (2.21) which matches D in

blocks m-1, m, and m -1-1. Then

K((DAD)-'A) < k((5aD)-M).

Proof: The proof is analogous to that of lemma 2.3 in the 1-D case.

Lemma 3.4 shows that the matrix D of the form (2.21) which minimizes k((DAD)"'A) over all

matrices D of the form (2.21) also minimizes this quantity over all diagonal mau-ices whose {m-lf, m**,

and {m+iy diagonal blocks are scalar multiples of the idcniiiy. To show that it minimizxs this quantity

over all diagonal mau^ices, with possibly nonconstant elements in these blocks, requires some additional

work. To this end, wc prove the following lemma.

Lemma 3.5. Let D be any positive definite matrix of the form (2.21) and let M=DAD. The vectors v for

v^Av
which the Raylcigh quotient —=— attains its extreme values have blocks of the form

V Mv
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v, = a,,v, 1 = 1 n, (2.26)

where Oi ,
• • • ,a„ are scalars and s is the eigenvector of T corresponding to the smallest eigenvalue.

Proof: Let 5 be the matrix whose columns are the eigenvectors of 7", and let 6 be the diagonal matrix of

eigenvalues, so that we have TS = 56, S^S = SS^ = I. Define [/ to be the block diagonal matrix whose
diagonal blocks are all equal to S. Then U^AU is of the form (2.18) with T replaced by 8 and U^MU is

D* (block tridi(-I,Q-I))*D. Let P be a permutation matrix such that the)"" column of the i'* block ofa
matrix B is the /'" column of the j''' block of the mau-ix BP. Then multiplying by P^ on the left and by P
on the right, the above matrices become block diagonal with iridiagonal blocks given by

and

ajB, -a
I

-ai -a,

-a 1 a 1 0, -a
I

ai+a2
-^2

-02 -02

-0 2 2^,

-d' -d}

-d\ d\Q, -d^d

-dd2 ^2^1 -c/j

-di

-dl dl^^

respectively. Clearly, the exu-eme values of the ratio w^P^U^AUPw/w^P^U^MUPw are attained for vec-

tors H' with a single nonzero block, corresponding to the smallest eigenvalue 9,. The vector v = UPw, then,

is an extreme vector for the Rayleigh quotient v^Av/v^A/v, and each block is a scalar multiple of the eigen-

vector 5 of r corresponding to the smallest eigenvalue.

Lemma 3.6. (Assertion (1) of the theorem.) IfD is a matrix of the form (2.21) which satisfies

min K((DAD)-'A)=K((DAD)-U)
D of the form (Z2\)

(2.27)

then D also satisfies

min k((DAD)-M) = k((Z)AD)-M).
Dzfpositive defirute diagonal matrices}

(2.28)
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Moreover, any positive definite diagonal matrix which satisfies (2.28) is of the form (2.21).

Proof: Let D = diag{Di, ,D„) be any positive definite diagonal matrix. Let D be the matrix of the

form (2.21) whose {m-\y', m"', and im + \y' block coefficients are

di=s'^D„_iS, d = s'^D„s, d2=s'''D„^_iS,

where 5 is the eigenvector of T corresponding to the smallest eigenvalue p.. Define M=DAD and

M = DAD. Let v be a vector satisfying (2.22) and (2.26). Then v^Afv satisfies

v^Mv = v'^DD'^MD'^Dv = w'^Mw,

where w=D Dv. The vector w can be written in the form v+v, where v = (D D-I)v. Because of the

choice of di, di, and d, we have

V Mv = a„_i5^(^'D„_i -I)^{d^a„-i\is -dia„_2X -dida„s) +

a„s {d D„-I){d a„\]LS- dida„-is -dd20.„+xs) +

a„+i5^(rfi'£»„+i - 7)^(^2 a„+i|jj -d2a„+2.s -dd20.„s)

= 0.

It follows that

v^A/v = w^Mw = v^A/v + V Mv > v^A/v.

v^Mv
Since, by theorem 1 and lemma 3.5, the largest value of the Rayleigh quotient -^— is obtained for a vec-

vMv
lor V satisfying (2.22) and (2.26), it follows that

v^Mv ^ v^Mv ,, ^„,
max^^— >max^^—

.

(2.29)
v»o V Av v*o V Av

Now let a vector w be given by

where v again satisfies (2.22J and (2.26). Then w^Mw is equal to v^A/v, and again we can write >v in the

form w = V + V, where v = (D D-I)v. We now have

V Av = a„_i.? (rfiD„_i-/)'ai(a„_i|ij -a„_25 -a„s) +

_-_i a\+a2
a„s'(dD„-Iy{—-

—

a„\is - a^a„^]S - ajCL^+^s) +

am+li^('^2^m +l-/)^a2(am +lU^ - O-mS - o.„^2s).
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which can be written in the form

v^Av = v^_i (C/lCv)„_, + vl{CACv)„ + v^i (CACv)„^i ,

where C is a diagonal matrix whose diagonal elements are one except in blocks m-\, m, and m + \, where

they are

respectively. Because of the choice of d], d2,and d, we know that the quantities under the square roots are

nonnegalive, since

; = 1 / = 1 j=\ j=\ t = i d,,, d,j

> = 1 / = 1 t=l ;=1

Hence v Av is nonnegative and so we have

w^Aw>v^Av+v Av>v^Av.

Since, by theorem 1 and lemma 3.5, the Raylcigh quotient r— obtains its largest value for some v satis-

fying (2.22) and (2.26), it follows that

w'^Aw v^Av ,- ,„,
max =— > max ^. (2.jU)

Combining (2.29) and (2.30), we obtain the desired result:

K(A/"' A) < K(Af "' A) < k(M''a).

Since the inequalities in (2.29) and (2.30) are strict unless v is zero, i.e., unless D is, itself, of the form

(2.21), the second part of the lemma is also proved.

While our primary interest has been in diagonal scalings of the Laplacian, it should be noted that the

proofs of lemmas 2.3 and 3.6 make no use of the assumption that D is diagonal outside of positions

(blocks) m-1, m, and m+l. They can therefore be generalized to the following result:

Corollary. For the 1-D problem, the matrix D^ of theorem 2 minimizes k((£[A;,£;,)"' AJ over all matrices

Eh who.se three center rows and columns (w-1, m, and m + \) have nonzeros only on the diagonal. For the

2-D problem, the mau-ix D^, of theorem 3 minimizes k((£'[A;,£J"'A^) over all matrices Ef, whose 3;j center
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rows and columns (n{m-\) through n(m + \)) have nonzeros only on the diagonal and these nonzeros are

positive. More generally, it minimizes this quantity over all matrices whose 3n center rows and columns

have nonzeros only in the n by n diagonal blocks and for which these diagonal blocks, £„_i , E„, and £„+i

,

have the property that

(s'^E,s)is'^E-^s)>\, i=m-\,m,m + \,

where s is the eigenvector of T corresponding to the smallest eigenvalue.

3. Numerical Results.

For a given matrix Af, an optimization code can be used to determine numerically the optimal

preconditioner of the form (1.3). A particularly efficient technique for solving this type of optimization

problem was developed by Overton [5]. Experiments with this code were reported in [2]. The code uses a

variant of Newton's method to determine the matrix A/ of a specified form (e.g., form (1.3)) for which the

spectral radius

p(/-A/-M,)

is minimal. It was shown in [2] that this same matrix M (or any scalar multiple of M) also minimizes the

condition number k(A/''A>,), provided the set over which the minimization is being performed contains all

positive scalar multiples of its members, which it does in this case.

In the following experiment, the matrix Af, was taken to be the matrix arising from a continuous

piecewise linear finite element approximation on a uniform grid of size h for the one dimensional problem

(2.4)-(2.5), where

ai = l, 02 = 100- 0-1)

The optimization code was run to determine the optimal preconditioner of the form (1.3). The diagonal

matrix D^ determined by the code was always of the form (2.9), as Theorem 2 shows it must be. (In fact,

this observation of the numerical results led to the statement and proof of Theorem 2!) The values of the

diagonal elements d^, d2, and d and the condition number k of the optimally preconditioned system are

listed in Table 1 for various grid sizes. The actual matrix D;, returned by the code has been multiplied by a

scalar so that d is 1

.

The largest problem size that the optimization code was able to handle at the time of these tests was

about n=:225, but it is currently being modified to handle larger matrices. For this value of n, the element

dx and the condition number k have reached only about half of their asymptotic limit. It is not at all clear

from the numerical results alone that there is an asymptotic limit, since this is approached only for much

smaller values of h. This leads one to question the relevance of asymptotic results such as that in Theorem

2, since for typical size problems they may not be approached. It is interesting to note that for all problem

sizes the scalar d is equal to di, the diagonal element corresponding to the subregion with the larger diffu-

sion coefficient.
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number for the preconditioned system that is 0(1), independent of the mesh size [3]. Since the leading

terms of the differential operator in (4.2) match those in (4.1), it is perhaps not surprising that this is a

near-optimal diagonal scaling.

When the coefficient a is discontinuous or continuous but not differentiablc, there is no such analogy

between the preconditioner and a differential operator whose leading terTn(s) match those of the original

equation. In this case, a discontinuous diagonal scaling of the Laplacian does not represent a second-order

self-adjoint elliptic operator and, as theorems 2 and 3 show for a specific problem class, the condition

number of the matrix preconditioned in this way may become infinite as h goes to zero.
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